Improved algorithmic versions of the Lovász Local Lemma
نویسنده
چکیده
The Lovász Local Lemma is a powerful tool in combinatorics and computer science. The original version of the lemma was nonconstructive, and efficient algorithmic versions have been developed by Beck, Alon, Molloy & Reed, et al. In particular, the work of Molloy & Reed lets us automatically extract efficient versions of essentially any application of the symmetric version of the Local Lemma. However, with some exceptions, there is a significant gap between what one can prove using the original Lemma nonconstructively, and what is possible through these efficient versions; also, some of these algorithmic versions run in super-polynomial time. Here, we lessen this gap, and improve the running time of all these applications (which cover all applications in the Molloy & Reed framework) to polynomial. We also improve upon the parallel algorithmic version of the Local Lemma for hypergraph coloring due to Alon, by allowing noticeably more overlap among the edges.
منابع مشابه
A Simple Algorithmic Proof of the Symmetric Lopsided Lovász Local Lemma
We provide a simple algorithmic proof for the symmetric Lopsided Lovász Local Lemma, a variant of the classic Lovász Local Lemma, where, roughly, only the degree of the negatively correlated undesirable events counts. Our analysis refers to the algorithm by Moser in 2009, however it is based on a simple application of the probabilistic method, rather than a counting argument, as are most of the...
متن کاملAn alternative proof for the constructive Asymmetric Lovász Local Lemma
We provide an alternative constructive proof of the Asymmetric Lovász Local Lemma. Our proof uses the classic algorithmic framework of Moser and the analysis introduced by Giotis, Kirousis, Psaromiligkos, and Thilikos in " On the algorithmic Lovász Local Lemma and acyclic edge coloring " , combined with the work of Bender and Richmond on the multivariable Lagrange Inversion formula.
متن کاملColoring non-uniform hypergraphs: a new algorithmic approach to the general Lovász local lemma
The Lovász Local Lemma is a sieve method to prove the existence of certain structures with certain prescribed properties. In most of its applications the Lovász Local Lemma does not supply a polynomial-time algorithm for finding these structures. Beck was the first who gave a method of converting some of these existence proofs into efficient algorithmic procedures, at the cost of loosing a litt...
متن کاملAn Extension of the Moser-Tardos Algorithmic Local Lemma
A recent theorem of Bissacot, et al. proved using results about the cluster expansion in statistical mechanics extends the Lovász Local Lemma by weakening the conditions under which its conclusions holds. In this note, we prove an algorithmic analog of this result, extending Moser and Tardos’s recent algorithmic Local Lemma, and providing an alternative proof of the theorem of Bissacot, et al. ...
متن کاملLovász Local Lemma: an algorithmic approach
Seit vielen Jahren wird die „klassische“ Erfüllbarkeit Boolescher Formeln, insbesondere in k-Konjunktiver-Normal-Form (k-KNF), unter einschränkenden Voraussetzungen untersucht. Einen wichtigen Beitrag hierzu lieferten in den 70er Jahren Lovász und Erdős mit dem Lovász Local Lemma [EL75], mithilfe dessen ohne größeren Aufwand die Erfüllbarkeit einer Booleschen Formel in k-KNF bestätigt werden ka...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008